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The Triangle Condition for Contact Processes on
Homogeneous Trees

Roberto H. Schonmann1
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We complete work of C. C. Wu, by showing that for contact processes on
homogeneous trees with degree at least 3 the triangle condition is satisfied below
the second critical point. In particular it holds at the first critical point and
therefore at this critical point the contact process has mean-field critical
exponents.
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1. INTRODUCTION AND MAIN RESULTS

The contact process with infection parameter A > 0 on a countable graph
G of bounded degree is a continuous time Markov process with state space
{0, 1}^C, where i^G is the set of vertices (also called sites) of the graph.
Elements of this state space are called configurations. When the configura-
tion at a given site is 1 one says that there is a particle there or that the
site is occupied or that the site is infected. Otherwise one says that the site
is vacant or healthy. The contact process evolves according to the following
local prescription.

(i) A particle at a site gives birth to new ones at each neighboring
vacant site at rate L

(ii) Particles die at rate 1.

For a more precise description of the model, its construction and
background material, we refer the reader to [Ligl] and [Dur].
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In this paper we will consider the contact process on the homogeneous
tree of degree d+1, denoted by Jd. The case in which d= 1 corresponds
to the linear chain Z, and will not be considered here, so that we assume
that d> 2. A great deal of attention has been given to contact processes on
such trees, and a substantial amount of information on its behavior is
available from the papers [Pem, MS, MSZ, DS, Wu, Zha, Lig2, Sta, Lig3,
LS, SS, and Lal].

We denote by (En)t>0 the contact process started at time 0 from the
configuration n. The configuration with a single particle at site x is, in an
abuse of notation, denoted by x. An arbitrary site of the tree is called its
root, denoted by 0. Configurations are identified with the set of sites where
they take the value 1, so that in particular 0 is the configuration with no
particles. The probability of (global) survival is given by

Similarly, the probability of local survival (sometimes referred to as prob-
ability of recurrence) is given by

Interest on the contact process on homogeneous trees with d > 2 stems
to a great extent from the fact that there are two distinct critical points.
0 < A1 < A2 < oo, defined as follows.

and

In this paper we are concerned with the critical behavior of the process
in the vicinity and at the threshold for global survival, A1. In [Wu], under
the technical assumption that d^5, this behavior was shown to be of
mean-field character, i.e., critical exponents take the branching-process
value. We will build on that work and complete it, by removing that
technical condition. To state the precise results, we need to introduce a few
more definitions.

We suppose that the contact process on Jd, with infection parameter
A>0 is constructed in the usual graphical additive fashion, by means of
Poisson death marks (at rate 1 for each site) and Poisson arrows (at rate
X for each oriented pair (x, y) such that {x, y} is an edge of the graph.
We will use P2 to denote the probability measure corresponding to the
graphical construction, and EA to denote the corresponding expectation.
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Given two space-time points, (x, s), (y, t)e Vj x R + , with s<t, we say
that there is a path from (x, s) to (y, t) if there is a sequence of times
s=t 0 <t 1 < ••• <tn<tn +1 = t and spatial locations x = x0, x1,..., xn = y so
that for i= 1, 2,..., n there is an arrow from xi_1 to xi at time ti and the
vertical segments {x i} x ( t i , ti + 1) for i = 0, 1,..., n do not contain any death
mark. Given a configuration n we set

In this fashion {En : t ^ 0} is a version of the contact process on Td started
from n. We will use the notation { ( x , s ) - + ( y , t ) } for the event that there
is a path from (x, s) to (y, t) in the graphical construction.

The distance between two sites x and y in 1^ will be measured by the
minimal length of the paths along neighboring sites which join x to y, and
will be denoted by \\x — y\\. We will abbreviate ||x — 0|| = \\x\\. The distance
between two points (x, s) and (y, t) in V x R + will be measured by
\\(x,s) — (y,t)\\ = \\x — y\\ + \t — s\. The open triangle diagram is now
defined by

with

Theorem 1. For the contact process on the homogeneous tree Td

with d^2, if A < A 2 , then

Theorem 1 will be proved in Section 2. From the paper [BW] we
know that this theorem implies that certain critical exponents take their
mean field value, as stated in Corollary 1 below. The susceptibility x (A)
which appears there is defined as
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The notation f(A) w g(A) used below means that there exist positive finite
constants C1 and C2 such that

Corollary 1. For the contact process on the homogeneous tree Jd

with d >2 we have the following mean-field power laws:

Our proof of Theorem 1 in Section 2 will give rise to some by-
products which will be presented in Section 3.

2. PROOF OF THEOREM 1

Before we can start the proof of Theorem 1, we need to recall some
definitions and results from [Lig3, LS and Lal]. Denote as site 1 one of the
neighbors of the site 0; then denote as site 2 one of the neighbors of site 1
which is different from site 0; successively denote as site n + 1 one of the
neighbors of site n which is different from site n — 1. Note that site n is at
distance n from the origin and that the sites 0, 1,... are the sites of a sub-
graph of Jd which is isomorphic to the semi-infinite linear chain Z+. Set

From the strong Markov property, used at the first time that the site m
becomes infected, in conjunction with the property of attractiveness of the
contact process one obtains the inequality

From this inequality it follows that the following limit exists.

Note that

for n ̂  0.
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Similarly we have the existence of the limit

and the inequality

for t ̂  0.
From [LS] and [Lal], we know that for A<A 2 ,

We also need to introduce the following object.

Note that

Lemma 1. Given e>0, there exists C<oo such that for all
A£ [e, A2 —e] and n^O,

Proof. Let ae be the probability for the contact process with infection
parameter e, that between time 0 and 1 there is no death mark at the
origin, and there is an arrow from the origin to its neighbor 1. Clearly
ae = e-1(1 - e - E ) > 0 , and for A^e

Clearly also

Comparing this with (2.4) yields, in case A<12 —£,
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Therefore, for arbitrary K > 0,

where the fact that n(A2 — e) < 1 was used. Using again this fact and referring
to (2.7), one concludes that if K is large enough and C = 2K we have

for n > 1. That for large C, we have un(A) ^ C(n + 1) un(A) also in case n = 0
is trivial, since n ( X ) ^ n ( A 2 - e ) < L The proof is complete by referring to
(2.2). |

Proof of Theorem 1. We will explain how Lemma 1 can be used to
adapt the proof in [Wu] to all d^2.

Suppose that A < A2. Note that from Lemma 1 and (2.5) it follows that
there exists B' e (B(A), l / ^ /d) and C1 < oo such that

for all n. This inequality replaces Lemma 2 in [Wu], and confirms the con-
jecture in that paper stated immediately before that lemma.

Now we rewrite display (40) in [Wu]. We still use his Lemma 3 as he
did, but in the last step, we use (2.9) to obtain the following.
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To see that the last expression above vanishes as z -> oo, we can refer
to Lemma 1 in [Wu]. For this, the reader Should compare the statement
of that lemma in [Wu] with his Eq. (23).

At this point we know that

So it remains to show that for any fixed z e Td,

But using the results above, this can now be done exactly in the same way
as in [ Wu] (see the final part of his proof of his Theorem 1). |

3. SOME PROPERTIES OF p

It is clear that B(A) = 1 for A> A2. A great deal of information about
the behavior of B(A) as a function of A in the interval (0, A2] has been
obtained in the papers [Lig3, LS and Lal]. We will review these known
results at the end of this section; when we combine them with some new
results which will be proved here.

Before we can state these new results, we need to introduce some
definitions. We will let the random variable Xn be the total number of
arrows which point from an infected site to the site n in the process
(£° : t>0). And we also define

(The extra 1 in the definition of I0(A) is needed to make certain statements
below true; it may intuitively be seen as accounting for the particle initially
at the origin.)

Clearly we have

for n > 0, and

for n > 1.
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We claim that also

for m, n > 0. To justify (3.3), we first note that in case m = 0 or n = 0 this
claim is trivially true. For the other cases we compare the contact process
starting with a single particle at the origin with a multitype contact process
described as follows. Particles can be of type 0, 1,2,..., with the particle
initially at the origin being of type 0. Particles of types 1,2,... evolve as
independent contact processes, independent also of the behavior of par-
ticles of type 0 (in particular particles of different type can coexist at the
same site at the same time). Particles of type 0 evolve as a contact process,
except for the fact that they cannot infect the site m. The first time when
there is an attempt by a particle of type 0 to infect the site m, a particle of
type 1 is created at site m; the second time when there is an attempt by
a particle of type 0 to infect the site m, a particle of type 2 is created at
site m; and so on. This multitype contact process dominates the contact
process in the sense that whenever there is a contact process particle at a
site, there will be some multitype contact process particle (of some type)
also at that site. Let X'm be the total number of times when a type 0 particle
tries to infect the site m in the multitype contact process (this equals the
number of other types of particles ever created in this process). Let X"m + n

be the the total number of times when a particle of any type tries to infect
the site m + n in the multitype contact process (due to the geometry of a
tree, we are only talking about particles of types different from 0 here).
Now note that

The inequality (3.3) yields

Note that

for n ̂  0.
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Theorem 2. The function B ( • ) is continuous on the interval (0, A2].
For A < A2

Moreover, given £>0 there exists C(e)e(0, oo) such that for all xe
[e, a2 — e] we have

and

Proof. Suppose that e > 0 is fixed and that A e [e, A2 - e]. Using the
notation introduced in the beginning of the proof of Lemma 1, we have

The same argument also gives

From (3.2), (3.6) and (3.7), we have In(A) ^ C'(e) un(A), and combining
this with Lemma 1 and (3.1) yields

This chain of inequalities and the fact that e > 0 is arbitrary given us

for A e (0, A2). Combining it also with (2.2) and (3.5) given us all the claims
in the theorem, except for the continuity of B ( • ) in (0, A2]. The proof will
therefore be complete once we show that
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and

To show the first of these claims, note that if for T> 0 we set

then

But u T ( . ) is clearly a continuous function, and therefore B ( • ) is lower-semi-
continuous. Since B ( • ) is clearly non-decreasing, it is also left-continuous.

To show (3.11) define

For fixed A, uT n(A) approaches un(A) as T-* oo, in a fashion which can be
controlled uniformly in Ae [e, A2 — e] as follows, using (2.8) and (2.4),

Since n(A2 — e)< 1, by (2.5), the last expression above vanishes as T-> oo
showing that uT( •) -> un(•)> uniformly on [e, A2 — e]. As a function of A
uT(A) is clearly continuous, hence un(•) is also continuous on [e, A2 — e].

From the part of the theorem which has already been proved, w<
know that (C(e) u H (A)) 1 / n > B ( A ) and lim^^ (C(e) un(A))J / n = B(A). Hence

Therefore B ( • ) is upper-semi-continuous on [e, A2 — e]. Since B ( • ) is non-
decreasing, it is also right-continuous on this interval. Since e>0 is
arbitrary, (3.11) is assured. |
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Combining results in [Lig3, LS and Lal] with those in the present
paper we know now that the function B ( • ) , which is identically 1 on
(A2 , oo) is strictly increasing and continuous on (0, A2] and satisfies also:

and

The strict monotonicity, as well as (3.14) are proved in [Lal]. The claim
(3.13) follows, for instance, from combining the following: the continuity of
B ( • ) at A1 the result on the critical behavior of X(A) near A1, as given in
Corollary 1, Eq. (2.6), and the relation between u(A) and B(A), as given in
Theorem 2. Alternatively, observe that [Lig3] proved that B ( A ) ^ 1/d for
A <A1 and that for A > A 1 clearly B ( A . ) ^ 1/d (since B(A) < 1/d implies E^
(number of sites ever to be infected) <oo, and this implies p(A) = 0); the
continuity of B ( • ) at A1 yields then (3.13). Finally (3.12) is easy to verify
using the standard comparison of the contact process with a branching
random walk, obtained by allowing multiple occupancy of each site by
particles which create offspring and may die independently.
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